CALCULATION OF THE TEMPERATURE FIELD ASSOCIATED
WITH THE INJECTION OF A HEAT-TRANSFER AGENT INTO
AN OIL STRATUM IN THE LINEAR CASE
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Equations are obtained for determining the temperature field of an oil stratum and the sur-
rounding rock when a heat-transfer agent is pumped into the stratum. These equations are
derived on the basis of a boundary condition of the third kind at the point where the fluid
enters the bed, which corresponds more closely to the actual pumping conditions than the
usual boundary condition of the first kind.

One of the most important problems relating to petroleum extraction is the question of the tempera-
ture field of the oil stratum and the surrounding rock when a fluid, whose temperature is different from
the initial local temperature, is injected into the stratum. We propose to consider the following problem.
Let an incompressible fluid, whose temperature is different from the initial local temperature, be pumped
into an infinitely deep stratum through a straight shaft located in the plane —= < y < +®, x =0, —h < z=0.
It is required to determine the temperature of the stratum in the region 0 < X < tw, —0< y+o, ~h <z
= 0 and the surrounding rock in the regions 0 < X, y, z< + and 0 < X, y < +o, —o < z < ~h, We make
the following assumptions [1-3].

1) The rocks above and below the stratum have the same thermophysical properties and are im-
permeable for the fluid.

2) Heat transfer between the fluid and the structure of the stratum is instantaneous.

3) The rocks surrounding the stratum are assumed to be thermally anisotropic: their thermal con-
ductivity in the direction of the z axis is considered to be equal to their true thermal conductivity
and that in the direction of the x axis equal to zero.

With respect to the thermal conductivity of the stratum in the direction of the x axis we will consider
two possibilities.

I. The thermal conductivity of the stratum in the direction of the X axis is equal to the true thermal
conductivity of the stratum (incomplete lumped-capacitance model described in [1, 2]).

II. The thermal conductivity of the stratum in the direction of the x axis is equal to zero (Lauwerier's
model [3]).

At the point where the fluid enters the stratum it is usual to formulate a boundary condition of the
first kind [1-3]

Ulyep = 1,
=i S

according to which the temperature of the stratum in the plane x = 0 is instantaneously equal to the tem-
perature of the pumped fiuid. This does not correspond to actual conditions. In fact, if one begins to pump
into a porous wall with initial temperature T, a fluid whose temperature at a certain distance from the wall
is maintained equal to Ty # T,, then the wall surface temperature does not become instantaneously equal to
Tg. In [4] it was shown that in the linear case condition (1) is only approximately correct at sufficiently
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large values of the nondimensional time t or the convective parameter 2y and that the actual pumping pro-
cess corresponds to the boundary condition of the third kind employed below. With a boundary condition
of the third kind the temperature of the stratum in the plane x = 0 only gradually (theoretically as t — «)
approaches the temperature of the pumped fluid. In 4] a boundary condition of the third kind was used to
prove the coincidence of the integral heat losses in the linear and radial cases. Below, this condition is
used to determine the temperature field of the stratum and the surrounding rocks,

In the linear case the mathematical formulation of the problem in nondimensional quantities for
models I and If is as follows
o ou
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In the case of model I a® = ¢ /a%, in the case of model 11 a® = 0. We apply a Laplace—Carson transforma-
tion to problem (2)-(5), setting

u(x, z, py=p yu(x, z, 1) exp(— pt)dt. (6)
0
Solving the equation for the transform, we obtain
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Evaluating the inner integral in (7) by applying a Laplaée transformation with respect to the variable t — 74,
we finally obtain

it

_ X P
u(x, z, 1)y = Hexp ( p ) j‘ ¢ (7y) erfc (W—T—l)drl. (10)

The function (10) is the solution of problem (2)-(5). We will now consider models I and II separately.

I. Incomplete Lumped-Capacitance Model. In (10) we set

a? .
at = -5 (11)

After certain transformation this gives
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Equation (12) determines the stratum roof temperature.

(12)

In order to obtain the stratum temperature it is sufficient to set z = 0 in (12)

1 .
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In particular, the temperature at the point where the fluid enters the stratum is equal to
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Equation (13) gives the maximum error introduced by using a boundary condition of the first kind (1) in-

stead of a boundary condition of the third kind (4). This error may be of the order of unity, since from (14)
it follows that

lim ug (0, ) =0;  lim us(0, ) = 0. (15)
t->+1-0 Q->+0

>0

Accordingly, in the linear case it is preferable to employ Egs. (12) and (13) for calculating the tem-

perature field of the stratum and the surrounding rock rather than the equations obtained in [1] with bound-
ary conditions of the first kind (1).

II. Lauwerier Model, Passing to the limit in (10) as a® — +0, making the substitution t — T/u2 = £,
and integrating by parts, we obtain
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In order to evaluate the integrals in (16) we employ the formula*

j‘exp(—zxr—%) ndTl o dtg’l . V;;? {exp (—2vap)
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Then (16) takes the form
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The function u(x, z, t), given by Eq. (18), is the solution of problem (2)-(5) at a? = 0, i.e., an ex~
tension of the Lauwerier equation [3] to the case of a boundary condition of the third kind. The first term
in (18) coincides with Lauwerier's expression [3], which does not depend on the thermal conductivity of the
stratum Ag. The remaining terms of Eq. (18) take the thermal conductivity of the stratum partially into
account. If in (18) we set Ag =0 (i.e., H — o), then all the terms in (18), apart from the first, will be equal
to zero and Eq. (18) goes over into the Lauwerier expression [3]. As before, relation (16) holds for Eq.
(18), and therefore the error introduced by using Lauwerier's expression [3] instead of (18) may be of the
order of unity,

If in (18) p? < 8yH, then one must make the transformation

9 o--iff 9; f—ai
eric(a 4-if) =1 —T- J‘ exp (— &3 dE = 1 ——7;_— j' exp (1% dy. (19)
0
z
The function { exp (y?)dy is tabulated in [6].
0
NOTATION
ux, z, t) = [T(x, z, t)
— Tol/ (Tf — Ty) is the nondimensional roof temperature;
ug(x, t) =u, 0, t) is the nondimensional stratum temperature;
T, z, t) is the dimensional roof temperature;
T is the initial temperature of the stratum and the surrounding rocks;
Tg = const B is the fluid temperature at a certain distance from the entrance to the stratum;
x =2x/h, z =2z/h,
t = 4a%t/h? are the nondimensional coordinates and time, respectively;
h is the thickness of the stratum;
ak, ak, Ag, Ap are the thermal diffusivities and thermal conductivities of the stratum and the roof,

respectively;
*For brevity the derivation of Eq. (17) has been omitted.
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Cs, Cr, cf are the volume specific heats of the stratum, the roof, and the fluid;

a* = dk/adt is the case of model I, a® =0 in the case of model II;

2y = QCf/ Zarcs is the convective parameter;

Q is the volume flow rate of injected fluid per linear meter of the shaft;
B = cp/Cgs

H =Qcg/2)g.
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